N8O-16825 /477

OBJECT-ORIENTED DEVELOPHENT ” P
by

Donald G. Firesmith
Softuare Methodologist

Magnavox Electronic Systems Company
Advanced Softuare Systems Division
1313 Production Road
Fort Vayne. IN 46808
(218) 429-4327

1) VHY 1S OBJECT-ORIENTED DEVELOPMENT (QOD) IMPORTANT?

00D is one of the extremely few softuare development methods
actually designed for modern Ada (#) language, real-time.
embedded applications.

00D im a significant improvement over more traditional functional
decomposition and modeling methods in that 00D:

a) Better manages the size, complexity. and concurrancy
ot today’s systems.

b) Better addresses important software engineering
principles such as abstract data types, levels of
abstraction, and information hiding.

c) Produces a better design that more closely matches
reality.

d) Produces more maintainable software by better localizing
data and thus limiting the impact of requirements changes.

@) Specifically exploits the pouer of Ada.

2) WVHAT IS 0O0D?
00D is a msystematic. step-by-step softuare development method that:

a) Has an optimal domain of application ~-~ the development of
modern Ada applications (e.g.. real-time. embedded software).

b) Covers all. or a major portion. of the software life-cycle.

c) Supports extansive parallel development.

d) HManagee the complaexity of large development efforts.

e) ls suprorted by detailed standards and procedures.

f) Requires training and support to be effective.

00D is:
a) O0Object-oriented.
b) Ada-oriented.

(%) Ada is a registered trademark of the U.S. Government (AJPO).

D.4.1.1

c)
d)

e)

Based upon modern softuare engineering.
Recursive, globally top-doun., hierarchical CONPOSITION
method.

Revolutionary in approach.

£) A "grab and go” method.

g) HRelatively easy to learn.

h) Being successtully used by several companies.

i) Still evolving (see Figure 1).
ENTITY-ATTRIBUTE RELATIONSHIP LEVELS OF ADBSTRACTION
Dotabose Technology (1960's) Dtikstra (1968)
ABSTRACT DATA TYPES INFORMATION HIDING
Ltskov, Guttog, Show (1970's) Parnas (1972)
FORMAL TECHNIQUES NOUNS AND VERBS
Robtnson, Leavitt (1977) Abbott (1981

Y Y v

OBUECT-ORIENTED DESIGN
Booch (1983)

OBUECT-ORIENTED DESIGN HANDBOOK
Berard, et. aol. (1985)

Y

AFATDS EXPERIENCE
Mggnovox (1985)

Y Yy
OBJECT-ORIENTED DEVELOPMENT
Filresmtth, et. ol. (1985)

Figure 13 The evolution ot 00D

D.4.1.2

I

4)

00D is NOT:

a) A functional, hierarchical DECOMPOSITION method.

b) A modeling method.

c) Easily mated with such methods.

d) Effective without adequate training.

@) Constrained to the classical "waterfall”®™ litecycle.

t) Consistent with DOD-STD-2167 and related pre-Ada standards.

g) Standardized acroaes the industry.

h) Yet adequately supported by commercially available software
tools.

00D 1S OBJECT-ORIENTED.

An OBJECT is an entity that:

a) Has a value (e.g.,» data) or state (e.g., Ada task).
b) Suffers and/or causes operations.

00D produces:
a) Ada objects that correspond to objects in the real world.
b) Ada types (i.e.. object templates).

c) Operations that operate on these objects.

00D emphasizes the implementation of objecta in terms of
ABSTRACT DATA TYPES. OOD groups, in the same Ada package:

a) A single type and
b) All operations that operate upon such objects.

00D producee a substantially different software architecture
than traditional functional decomposition methods such as

Structured Design which generate units., each of which implements
some FUNCTION of the requirements specification.

00D 1S ADA-ORIENTED.
Ada is an object-oriented high-level language.

Packages. which are the main building blocke of properly designed
Ada softuasre. are also the main building blocks produced by 0O0OD.

The physical design produced by 00D is top-douwn in terms of Ada:

a) Nesting and
b) Context (i.e.» the Ada "with" statement).

00D separately develops Ada specitications and bodises.
00D's louw-level testing naturally accounts for Ada compilation

order constraints.

D.4.1.3

S)

)

e idaamre et T

00D Diagrams clearly identify the various Ada programming units.
Ada PDL is an integral part of 00D’s design and coding stnpe.
The objects produced by 00D are implemented in Ada as:3
a) Constants and variables
b) Abstract data types
¢) Tasks
The operations produced by 00D aro implemented in Ada primarily as?
a) Subprograms
b) Taek entries

00D 1S BASED UPON MODERN SOFTVARE ENGINEERING.

00D specitically addresees each ot the following softuare
engineering principles or concepts:

a) ABSTRACT DATA TYPES. i) MODULARITY.

b) ABSTRACTION LEVELS. j) Organizational Independence.
c) Cohesion. k) Readability.

d) Concurrency. 1) Reusability.

@) Coupling. m) Structure.

t) INFORMATION HIDING. n) Teatability

g) Localization. o) Veritiability.

h) HMAINTAINABILITY.

00D 1S RECURSIVE, GLOBALLY TOP~DOWN., HIERARCHIAL COMPOSITION METHOD.

Traditional software development methods are restricted to the
claseic "watertall” life-cycle (see Figure 2) in which:

a) The softuare requirements are analyzed first.

b) The preliminary design is developed second.
c) The detailed design followus.
d) And so on.

®@ @ © ® @ ®

t
1
1
[

SYSTEM/SOF TWARE
REOQUTREMENTS
ANALYSIS

SOF TWARE
REQUIREMENTS -
ARALYSIS

[}
[}
'
'
]
'
'
l

PREL IMINARY
DESICN
OETAILED
DESIGN CODING UNIT
TESTING AND CSC
INTEGRATION
TESTING

CsCl
TESTING

Figure 2: The claseic "uaterfall®™ life-cycle

D.4.1.4

7)

8)

Because the softuare is developed in a top-doun manner only within
the boundries of each life-cycle phase, these rethods are at best
only locally top-down.

00D i’ a recursive. globally top-down, hierarchial composition
method. Its sotftusre life-cycle (msee Figure 3) ditters significantly
from the clasesic “watertall™ life-cycle because it (s based upon
recursion and tuo concepts unique to 00D: the Booch and Subbooch.

A BOOCH is the collsction of all softuare resulting from the
recursive application ot 00D to & specific set of coherent
sottuare requirements -- requirerants that egpecity a single
uvell-defined problem,

A SUBBOOCH is 8 small. managable subset of a booch that is
identitied and developed during a single recursion of 00D,
See Figure 4.

Note that these two concepts have no obvious natural relationship to
the DoD hierarchical decomposition entities CSCl, TLCSC, and LLCSC.

Beginning with the highest abstraction level and progressing
stersdily downwards in terms of nesting and "withing™., the booch

is designed, coded, and tested in increments of a subbooch. Thus.
the software grows top-down:» subbooch by subboochs, via the
racursive application o2 00D until the entire sottware tree

is completed.

Locally, however. 00D employs the appropriate technique
(top—down or bottom—-up) depending upon the specific requiremente
ot each individual development activity.

This allous very significant parallel] development based upon the
"Design a little, code a little, test a little™ concept.

RESPONSIBILITIES.

The follouing personnel have 00D responsiblities (see Figure 5):

a) Management

b) Software Development Teams. each consisting ot a:
- Designer
- Programmer
-~ Tester

c) Metrics Collectors

d) Softuare Quality Evaluation

a) Softuare System Engineering

SUBBOOCH DEVELOPMENT
The subboochs that comprise each booch are recursively developed

in a globally top-down tashion. The development of each subbooch
congigte of the following three subphsaaes:

D.4.1.5

~
SOFTWARE
REQUIREMENTS
ANALYSTS
PHASE
SOF TWARE
REQUIREMENTS
ANALYSIS
PHASE
CcT- SOF TWARE SYSTEM
ORIENTED INTEGRATION | INTEGRATION
DEVELOPMENT | AND TEST AND TEST
BUILD ! BUILD | BUILD 1
0BECT- SOF TWARE SYSTEM
ORIENTED INTEGRATION | INTEGRATION
DEVELOPMENT | AND TEST AND TEST
BUILD L BUILD L BUILD L
\ ! J
Y
BOOCH | DEVELOPHENT
BOOCH 2 OEVELOPMENT
| BOOCH M DEVELOPMENT |
, .
-
[suBBOOCH M. 1 DEVELOPMENT]
[suesoocH M.2 DEVELOPHENT| BOOCH M
— < . INTEGRATION
.. Se_ L AND TESTING
[puBBOOCH M.N DEVELOPHENT |
—
(
SUBBOOCH M.N | SUBBDOCH M.N | SUBBOOCH M.
REQUIREMENTS | DESIGN CODE AND TEST
BOOCH OEL IVERABLE
BOOCH BOOCH
TG rron PR 1o GEEMENTD | B0,

Figure 3! The 00D softuare life-cycle

D.4.1.6

b o -~ b — - —

b o= — 4 F -~

b= — =~ 4 H

NESTED IN THE
INIT. SUBBOOCH

j———— SECONDARY ———nt
SUBBOOCHS
RESULTING

FROM THE
USE OF
REFURSION

re———INITIAL SUBBOOCH

OF THE BOOCH

r— PARENT UNITS =t

b — = —

A

b - —— =

[T B

b — — —

b - - —

b ——— PAZINT UNIT
NESTEL IN THE
SEC SUBBOOCH

fe—— TERTIARY SUBBOOCH

RESULTING FROM
THE USE OF

RECURSION

WHERE 4 D REPRESENTS A SUBPROGRAM ANO

E REPRESENTS A PACKAGE

Figure 4:

REPRESENTS A DEPENDENCY

Sample Booch structure

D.4.1.7

3

{ M | Softuare !

Object-Oriented Development Process ! G| Dev. Tesm : . : g
== e e e e ———————— -l f |- ———

Step | Title ! TIDIPITI!IC!E
LR LD DL P I P T TP P P P T TP I L PP P PP R T P L LR DL D DL Ll Lol b ld btk
1 ! INITIATION OF BOOCH DEVELOPMENT I { ! ! ! 4
2 ! SUBBOOCH DEVELOPMENT e ———————————————
2.1 | SUBBOOCH REQUIREMENTS SUBPHASE R isbulndlbbedie bbb
2.1.1 | Initiation of Subbooch Development I S ! ! ! I 4
2.1.2 | Initiation of the SDF {3111 ! ! | 4
2.1.3 | Problem Statement 1311121 21 1 4
2.1.4 | Requirements Analysis {3111 21 21 { 4
2.1.5 | Subbooch Requirements Inspection P12 121 21 I 4
2.2 ! SUBBOOCH DESIGN SUBPHASE et st
2.2.1 | Logical Design 1!P3 1120 21 ! 4
2.2.2 | Object Analysis tP3 121 2 ! 4
2.2.3 | Operation Analysis 32 1 21 | 4
2.2.4 | Unit Id., Org., and Depandencies 3 121 20 L]
2.2.5 | Subbooch Preliminary Design Inspection { 3 | 2 | 1 t 1 !]
2.2.6 | Design Analysis P31 21 21 1 4
2,2.7 | Coding of Unit Specifications t3 12 2 !
2.2.8 | Subbooch Detailed Design Inspection tr 3+ 211+ 21111 4

. 2.3 ! SUBBOOCH CODE AND TEST SUBPHASE R e L
2,3.1 | Coding of Unit Bodies t 320102 i a
2.3.2 | Subbooch Test Plan 13t 21 2 111 I}
2.3.3 | Subbooch Test Software 32121011 !
2.3.4 | Subbooch Test Procadures 320201]
2.3.5 | Subbuoch Code Inspection 3121201004
2.3.6 | Initial Subbooch Testing 3212 41 H
3 i BOOCH [INTEGRATION AND TESTING e et
3.1 { BOOCH INTEGRATION v 3 ! U S Lt
3.2 ! BOOCH FUNCTIONAL TESTING P31 ! N G I
3.3 { BOOCH DELIVERABLE DOCUMENTATION 201 H
3.4 i BOOCH REVIEV V12121240100

MGNMT = Management 1 = Primary or major responseibility
D = Designer(s) 2 = Secondary responsibility
P = Programmer(s) 3 = Managerial reaponeibility
T = Tester(s) 4 = |ndependent audit responsibility
NC = Matrice Collector(e)

SQE = Software Quality Evaluation

FIGURE S: 00D Reeponeibilities

D.4.1.8

@

a) Subbooch Requirements.
b) Subbooch Desigh.
©) Subbooch Code and Test,

The SUBBOOCH REQUIREMENTS SUBPHASE has the follouwing steps!

INITIATION OF SUBBOOCH DEVELOPMENT - The Manager initiates
subbooch development by identifying the members of the
agsociated Software Development Team and tasking them to
meet an assigned schedule of subbooch milestones.

INITIATION OF SOFTVARE DEVELOPMENT FILE (SDF) - The Designer
initiates the associated SDF by obtaining an empty SDF
binder and inserting the initial Software Engineering Formm
(SEFS) that make up the coverpages.

PROBLENM STATEMENT - The Softuare Development Team jointly
atate in a eingle sentence the problem to be solved during
the current recursaion.

REQUIRENMENTS ANALYSIS - The Softuware Development Team jointly
collect, analyze, clarify., organize, and identify the subbooch
requirements,

SUBBOOCH REQUIREMENTS INSPECTION - The Designer prepares the
SDF for ingpection. The Manager schedules the associated
meeting. The Manager, the Programmer. and the Tester perform
the inapection. The Softuare Development Team takes any
appropriate corrective action.

The SUBBOOCH DESIGN SUBPHASE hae the following stepea:

LOGICAL DESIGN - The Softuare Development Team (under the
leadership of the Deeigner) develops in a single paragraph
a logical design that properly solves the problem of the
current recursion and identifies the relevant objects and
operationa.

OBJECT ANALYS!S - The Softuware Development Team (under the
leadaership of the Designer) analyzes all relevant objects
in the logical design paragraph, determines and documents
their relevancy, and provides the relevant objects with
valid Ada {denti{fiere. brief descriptions, and a list ot
associated attributes.

OPERATION ANALYSIS - The Softuare Davelopment Team (under the
leaaderahip of the Designer) analyzas all relevant operations
in the logical deaign paragraph, determines and documents
their relevancy, and providea the relevant operations with
valid Ada identifierss, brief descriptions. and a list ot
asgociated attributes.

MODULE IDENTIFICATION, ORGANIZATION, AND DEPENDENCIES - The
Software Development Team (under the leadership of the
Designar) organizes all relevant objecte and operations

D.4.1.9

by types, identifies the non-nested units for each such
organization, nests the organized objects and operations
vithin these units, and determines the visible dependencies

batueen these unite.

SUBBOOCH PRELINMINARY DESIGN INSPECTION - The Designer prepares
the SDF for inspection. The Programmer and Tester perform
the Inspection. The Softuare Development Tesm takes any
sppropriate corrective action.

DESIGN ANALYSIS - The Softuware Development Team (under the
leadership of the Designer) analyzes the design, identifies
the type of the nested units, common softuare, and nested

unite requiring recursion, etc.

CODING OF UNIT SPECIFICATIONS - The Softuare Development Tesm
(under the leaders:;.ip of the Designer) implements and
compiles, in s bottom-up manner in terms of unit dependencies.
the Ada specifications of all unite. This includes the
development of specification headers, PDL, comments, and
code from skoleton unit specifications.

SUBBOOCH DETAILED DESIGN INSPECT:ON - The Designer prepsres
the SDF for inepection. The Matrice Collector collects,
summarizes, and reports the subbooch design metrics.

The Programmer and Tester perform the [Inspection. The
Softuare Development Team takes any appropriate corrective

action.

The SUBBOOCH CODE AND TEST SUBPHASE has the following steps:?

CODING OF UNIT BODIES - The Software Developmant Team (under
the leadership of the Programmer) implements and compiles.
in a top-down manner in termes of unit dependencies, the
Ada bodies of all unite to be implemented during the current
build. Thie includes the daevelopment of body headers. PDL,
comments, and code from skeleton unit bodieas using the
technique ot step-wise refinement.

SUBBOOCH TEST PLAN - The Software Daevelopment Team (under
the leadership of the Teater) develops the test plan by
determining, creating files of. and documenting the test
input and expectaed test output data required for all
subbooch testing and documenting the allocation of these
teat cases to specitfic aubbooch teste.

SUBBOOCH TEST SOFTVARE - The Software Development Team (under
the leadership of the Tester) designs, implements. and
compiles all teat softuare programe required for aubbooch
teating scheduled for tha current build.

SUBBOOCH TEST PROCEDURES - The Softuare Development Team (under
the leadership of the Tester) develops the detailed atep-by-
step procedurese for performing all subbooch teste echaduled

for the current build.

ND.4.1.10

PP TRURPRPVI

SUBBOOCH CODE INSPECTION -~ The Programmer prepares the SDF for
inspection. The Netrics Collector collects, summarizes.
and reports the subboooch code metrics. The Softuare
Development Team perform the inspection. The Software
Development Toam takes any appropriate corrective action.

INITIAL SUBBOOCH TESTING - The Sottuare Development Team
(under the lesdership of the Texter) perform and document
the resulte of all initial subbooch tests.

PRACTICAL EXPERIENCE.

The use of 00D at Magnavox on the AFATDS Project (over SOK
lines of Ada code so far) has resultaed in the follouing lesusons
learned:

a) Avoid overspecifying the requirement® with explicit or
implicit design information of a functional decomposition
nature.

b) 1t a functional decomposition method 18 used to produce the
top-level design, it will be incompatible with the design
produced by 00D at the lower-levels and numerous interface
probleme will result.

c) Replacing the previous functional decompo®ition mindeset 1@
diftficult, primarily among the more experienced designers.

d) The concept of recureion is fairly difficult to master.

@) 00D training and support i1n tre method needs to continue
beyond the classroom.

t) 00D needs to be further retined., primarily in the area of
object-oriented requirements analysia.

g’ Ada-oriented test training 18 as necessary as training
in Ada-oriented design and programming.

h) 00D improves deesigne due to:

- Proper abetraction lavala.

- Proper information hiding.

- High modulsarity.

- lmproved intertfaces,

- Good support for atrong typing.

- Good correspondance to the reasl world.

1) 00D improvee productivity due to:
- FEnhanced parallel development.
- Reuse ot coda.

- Easy coding from deseign information.
- Easy modificastion ot daesign and code.

D.4.1.11

e

